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Abstract

In this paper, a new complex variable fundamental solution which satisfies the clamped boundary con-
ditions of half-plane problem has been derived by use of Riemann-Schwarz symmetric principle and the
mathematical theory of elasticity. The correspondent complex variable boundary integral equations for
elastic analysis have been given. Numerical procedure shows more efficiency and advantages of the present
method over conventional boundary element method. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM) for the first kind of boundary value problems (BVPs) of
half-plane have been studied adequately (see e.g., Telles and Brebbia, 1981; Huang and Tang,
1986). For the second kind of BVPs, however, no literature could be found except for BEM based
on Kelvin solution, which must discretize all boundaries by boundary elements. It is known that
the fundamental solution is most important for BEM (Brebbia, 1980; Hromadka and Lai, 1986;
Chandra and Mukhjerjee, 1997; Crouch and Starfield, 1983; Banerjee and Butterfield, 1981 among
many others). Therefore, the main obstruction might be the difficulty in derivation of fundamental
solutions for the above-mentioned problem. In this paper, a very concise method for deriving the
complex variable fundamental solutions for second kind of BVPs of half-plane has been developed
by extending the method for first kind of BVPs proposed by Huang and Tang (1986). Based on the
new fundamental solution presented in this paper, the correspondent complex variable boundary
integral equation method has been established. Numerical procedure and examples show the
accuracy of the developed fundamental solution and the efficiency and advantages of the present
complex variable BEM over conventional BEM.
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2. Basic theorems

Riemann—Schwarz symmetry principle for straight boundary may be expressed as following
(Muskhelishvili, 1953, Markushevich, 1983):

Theorem 1: Let I' be a straight line (say, x, = 0), which divides the complex plane Q into two half-
planes QF and Q~ (Fig. 1). Suppose that f(z) is an analytic function defined in one of two regions
say Q7, and there exists boundary value /" (7), tel". Then f(z) is an analytic function in Q~, and
there exists / ~(¢) which satisfies f*(f) =/~ (¢), tel’.

The following theorem may be derived by Theorem 1 (Huang et al., 1986):

Theorem 2: 1If fy(z) and Fy(z) are functions which are analytic in Q* and continuous on Q* 4T,
then there exists functions f,(z) and F,(z) which are analytic on Q~ and continuous on Q™ +1,
and the functions

@) =12 +/1(2) (a)

F(z) = Fo(2) + Fi (2) (b)
satisfy boundary condition:

f(+F(1) =0, tel (c)
and also when T is a straight line (x, = 0), one has

[i(@) = =Fy(2), Fi(2) = /(2. (d)

Proof: As fy(z) and Fy(z) are analytic in Q" and continuous on Q* +1I", we know from theorem 1
that f,(z) and F,(z) are analytic in Q™ and there exist boundary value f; (f) and F, () which
satisfy £ (1) = fo (1) and F§ (1) = F; (f). Thus, if one takes f,(z) = —F,(z) and F,(z) = —f,(2),
then f(z) and F(z) of expression (a) and (b) satisfy boundary condition (c).
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Fig. 1. Notation for half-plane.
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3. The complex variable fundamental solution for half-plane problem with straight boundary
clamped

The homogeneous boundary condition of the second kind of BVPs can be expressed by use of
complex variable fundamental solutions as BVP1 (Muskhelishvili, 1953; Markushevich, 1983;
Timoshenko and Goodier, 1970):

@i(2,20) = [201(2, 20) +Yi(2,20)]/3—4v) =0, z—>T o)

where ¢,(z, z,) and Yz, z,) are complex variable fundamental solutions; (2)" = d()/dz;z and z, is
field point and source point respectively (Fig. 2). Let

Fl(z,z0) = —[zi(z, z9) +1(z, 20)]/ (3 —4v) 2
then, the BVP1 can be simplified as the following BVP2:

¢i(z,20) +Fi(z,29) =0, z->T (3)
Thus, if

©(2,20) = @(2,20) + @z, Zy)

Vi(z,20) = lpp/(zﬁ Z())+l//bl(zs;)) 4
is the solution of BVP1, then

©(2,20) = @(2,20) + @z, ED)

Fi(z,zy) = F,(z, 20) + F,(z, 20) &)
1s the solution of BVP2, where

Fo(z,20) = —[20,(2, 20) + ¥ ,(z, 20)]/ (3 —4v)

Fu(2,20) = —[203(2, 20) +¥1(2, 20)]/ (3 —4v) (6)

where ¢,/(z, z) and Y ,(z, z,) are complex variable fundamental solutions for infinite plane at point

Fig. 2. Half-plane with straight boundary clamped.
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z due to a unit force at point z,; ¢,/(z, z,) and ¥z, z,) are mapping functions about boundary I’
to satisfy specified boundary conditions. Then by Theorem 2 we have

Pu(z,20) = —F,/(2,20)

Fy(z,20) = = @z, 20) (7
Substituting formula (6) into (7), one obtains

Pu(2,20) = [2¢,(2, 20) + (2, 20)]/ (3 —4v)

Uiz, 20) = B—=4)p,(2, 20) = 207(2, Z9) ®)

It can be found that for given ¢,/(z, z,) and ¥,,(z, z,), the mapping function ¢@,/(z, z,) and ¥,,(z, z,)
can be obtained by formula (8). Thus, the complex variable fundamental solution ¢, and , are
then given by expression (4).

Considering the symmetry of displacements, the complex variable fundamental solution ¢,,(z,
z) and V,(z, zo) for infinite plane problem can be derived by the solution of reference-8 (Mus-
khelishvili, 1953) as follows:

q)pl(za ZO) = A/ ln(Z_ZO)

Az

z—2Zg

lppl(zaZO) = Blln(Z_ZO)_ +ZI (9)

where 4, = ['"'/(8n(1—V))]; B, = i¥(3—4v)A4; i =/ —1; v is Poisson’s ratio. The well known
Kelvin solution can be derived from solution (9).

Substituting solution (9) into (8), paying attention to the symmetry condition of displacements
and the stresses vanishing at the pole point at infinity, and remaining the principle part of functions
at pole point at infinity, the mapping function can be derived as follows:

A)(z—2z,) .
(B—4v)(—z)

Az A, 2(zg—zy

2=z 34—z

(pb/(za Z) = _Alln(z_g) - /

Yul(z, Z) = —B,ln(z—%)—{—

—2B, (10)

The complex variable fundamental solution for half-plane problem with straight boundary clamped
is given by substituting solution (9) and (10) into formula (4).

4. Complex variable boundary integral equations for elasticity

The basic integral representation for elastic analysis can be written as (Huang and Tang, 1986):

ij(zo)ui(zo)‘FJ

r

P(z,z0)u;(z) dI'(2) = j U;(z,20)p;(2)dI'(2)

r

+J Ui(2',20)b(2)dQ(z")  (11)
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where the coefficient tensor C;(z,) can be obtained by assuming unit rigid body displacement in
all directions as:

Cylzo) = _J Py(z,zy)dI'(2) (12)

Uiz, zo) and P;{(z, z,) are kernel functions of the boundary integral equation, i.e., the displacement
and traction, respectively at field point z in direction x; due to a unit concentrated force at source
point z, in direction x,. These kernel functions will be expressed by complex variable fundamental
solution ¢/(z, z,) and Y,(z, z,).

Once the boundary values u,(z) and p,(z) are found by using expression (11) over all boundary
elements, internal results of displacements and stresses can then be calculated immediately by the
following integral equation.

u(2o) =j Ui(z, 20)p;(2) dF(z)—J Pz, 20)u;(2) dF(Z)JrJ Ui (2, 29)bi(2') dQ(2) (13)

Q

Considering the strain—displacement relation for linear elasticity, the strain tensor components can
be easily obtained as:

Q

&;(20) = JB,-,-(Z, Zo)Pk(Z)dF(Z)—J Tz, Zo)uk(Z)dF(Z)JFJ By (2", 29) by (21)dQ(2") (14)

where the third order tensor components By,;(z, zo) and T},(z, z,) are given by

Byij(z,20) = %[Ui/czj(za 20) + Upi(2, 20)]

T1ii(2, 20) = 5[ Pu (2. 20) + Pyi(z, 20)] (15)
where the °,” indicates partial derivative in the form

_00dz

0z, dx, (16)

().

The stress tensor components can be obtained in the same way as
0;1(z0) = J Dyi(z,20)pi(2)dT(2) _J Sij(2> 20)u (2)d(z) + J Dyij(2', 20) b (2))dQ(2") (17)
r T Q

where the third order tensor components Dy (z, z,) and S;(z, z,) can be expressed in terms of
kernel functions Uz, zy) and P,(z, z,) as follows:

Dkii(zr Z0) = }Léilek,l(Za Zy) +,“[Uik,f(2a Zo) + Uik.i(za Zo)]
Skij(Z: Z0) = iéij/k,l(Za Zo)"‘,u[Pik,j(Za ZO)+ij,i(Z, o)) (18)

where A and p are Lamé’s constants.
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5. Kernel functions expressed by complex variable fundamental solutions

According to the mathematical theory of elasticity (Mukhelishvili, 1953), the displacement
kernel function can be expressed in terms of complex variables as

1 R .
Uj(z,z0) = 271{(3 —4v) [5‘;‘1 Re(¢:(z, z)) _5‘/'2 Im(@;(zmz,))]

— 05 Re(20i(z,20) +:(2,20)) — [0, Im(Zi(2, 20) + (2, 2]} (19)
The stress o,; at point z due to a unit force at z, in direction x; is:
0(z,20) = 0, Re [20)(z,20) + (— D)'(20)(z, z9) +¥i(z, 20))]
+(040,2 +0,0) Im [20](z, z0) + (2, 29)]  (20)
and then, the traction P,z, z,) can be obtained as
Pi(z,2¢) = 0442, 2¢)
= njéz:i Re [2¢i(z,z0) +(— l)i(Z_(P;/(Z, 20) +Yi(z,20))]
+ (1m0, +n,0,1) Im [Z9](z, 20) + (2, 20)] (21)

where n, are the direction cosines of the outward normal n with respect to x-axis.
The strain kernel function B;;(z, z,) can be expressed in the same way, as

1
Bij/c(Z> Z) = @{(3_4")[5/(1 Re((/’i,j(za z9)+ (@j,i(za Zy))

— 02 Im(@, (2, 20) + (9;:(2, 29))]
—[0x1 Re(2(@i (2, 20) +(974(2, 20)) + Wi (2, 20) + (2, 20))
— [0 Im(2(97 (2, 20) + (@,:(2, 20)) + ] (2, 20) + (2, 20))]} (22)

The above equations are the basic expressions of the BEM using complex variables for elastic
analysis. A general-purpose computer program may be written based on the above equations. The
program may be applied to different kinds of plane problems as long as the subroutines for
calculating the relevant complex fundamental solutions and their derivatives are available. Thus,
the computer program may contain different complex variable fundamental solutions for different
problems. The above formulation is simple and straightforward as well as all fundamental solutions
are expressed by only two variables ¢ and . This characteristic facilitates easy program writing
and debugging.

6. Numerical examples and discussion

A clamped infinite straight boundary half-plane with a circular opening near the boundary is
shown in Fig. 3. The internal pressure is ¢ = 9.8 MPa; E = 20.374 GPa; v = 0.1. The boundary
element discretization by conventional BEM is shown in Fig. 4. In the present method, as the
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Fig. 3. Second BVP of half-plane with circular hole under internal pressure.
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Fig. 4. Boundary element discretization by conventional BEM based on Kelvin solution.

clamped boundary conditions are satisfied by complex variable solutions, only the edge of the
opening need be discretized (Fig. 5). A total of 24 constant boundary elements are employed along
the opening. The stress components along the clamped boundary elements are employed along the
opening. The stress components along the clamped boundary are compared with the solutions of
finite element method (FEM) as shown in Figs 5, 7-9. (NISA User’s Manual, 1997; Zienkiewicz
and Taylor, 1991. The FEM model contained 1136 four-noded quadrilateral elements with the
mesh as shown in Fig. 6. For conventional BEM, the problem needs many more elements to be
discretized and the numerical solutions near to and on that boundary can not be given directly
because of singular integration. It is shown in Fig. 7 that the difference of o, between present

Fig. 5. Present CVBEM discretization.
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Fig. 6. Finite element discretization (1136 quad-4-noded elements).

method and FEM is about nine percent. The reason might be that in FEM, only element nodes
along the clamped boundary are fixed which could not exactly express the total clamped boundary
conditions. The comparisons at internal points among complex variable boundary element method
(CVBEM) with 24 boundary elements, conventional BEM with 85 elements and FEM with 1136
finite elements are given in Figs 10—13. It can be found that the solutions obtained by CVBEM
and BEM are in good agreement. Considering the symmetry of the problem, the shearing stress
along symmetric axis should vanish. The present method gives shearing stress 5.1 E-6 MPa at
point (0, 0) and 2.0 E-3 MPa at point (0, 7.3) which are more precise than that of conventional
BEM [0.9 MPa at point (0, 7.3)] based on Kelvin solution and FEM [2.8 E-3 MPa at point (0, 0)
and 0.4 MPa at point (0, 7.3)].

In the above example it is interesting to note that the ratio of the orders of coefficient matrices
of the present method and conventional BEM is 1 : 3.5, and the ratio of computer interior capacities
occupied 1:12.5, which supports the high efficiency of the present method.
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Fig. 7. Stress g, at (x, 0) on clamped boundary by CVBEM (24 elements) and FEM (1136 elements).
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Fig. 8. Stress 7, at (x, 0) on clamped boundary by CVBEM (24 elements) and FEM (1136 elements).
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Fig. 9. Stress g,, at (x, 0) on clamped boundary by CVBEM (24 elements) and FEM (1136 elements).
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Fig. 10. Stress o, at (0, y) by CVBEM (24 elements), BEM (85 elements) and FEM (1136 elements).
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Fig. 11. Stress o,, at (0, y) by CVBEM (24 elements), BEM (85 elements) and FEM (1136 elements).
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Fig. 12. Stress o, at (x, 4.0) by CVBEM (24 elements), BEM (85 elements) and FEM (1136 elements).
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Fig. 13. Stress o,, at (x, 4.0) by CVBEM (24 elements), BEM (85 elements) and FEM (1136 elements).

7. Conclusions

A new complex variable fundamental solution for second kind of boundary value problems of
half-plane has been derived and correspondent boundary integral equations have been established.
The numerical procedure shows the advantages of present method over conventional BEM. The
present BEM requires a relatively simple computer program, and improves the accuracy of
numerical solutions for half-plane problems with clamped straight boundary. The random behavior
near to and on the clamped boundary is eliminated. More efficient numerical solutions could be
expected if linear or quadratic shape functions over boundary elements are employed with the
appropriate but simple modifications in the computer program.
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